Optimizing of the Basophil Activation Test: Comparison of Different Basophil Identification Markers

Bernadette Eberlein,1* Rebekka Hann,1,2 Stefanie Eyerich,2 Davide Pennino,2 Johannes Ring,1 Carsten B. Schmidt-Weber,2 and Jeroen Buters2,3

1Department of Dermatology and Allergy Biederstein, Technische Universität München, Germany
2Center of Allergy and Environment (ZAUM), Technische Universität and Helmholtz Center, Munich, Germany
3CK-CARE, Christine Kühne Center for Allergy Research and Education, Davos, Switzerland

Background: Flowcytometric identification of basophils is a prerequisite for measuring activation of basophils with IgE-dependent or IgE-independent stimuli. Aim of this study was to compare different marker combinations in a simultaneous multicolor flowcytometric measurement.

Methods: Ten patients with a grass pollen allergy and three controls were included in the study. Basophilic cells were gated by using anti-CCR3, anti-IgE, anti-CRTH2, anti-CD203c, and anti-CD3. Cells were activated by a monoclonal anti-FcεRI antibody, N-formyl-methionyl-leucyl-phenylalanine (fMLP), and the allergen extract Phleum pratense. The activation marker anti-CD63 was used.

Results: The highest relative number of basophils was found with anti-CCR31 cells, anti-IgE1 and anti-IgE1/anti-CD203c1 cells, the lowest with CRTH21/CD203c1/CD32 cells. A very good and good concordance of CCR31 cells was seen with CCR31/CD32 cells and CRTH21/CD203c1/CD32 cells in all experiments. The contamination of the CCR31 population with CD31 cells and the contamination of the IgE1-population with CCR32 cells and CD2032 cells were the lowest compared to all other marker combinations.

Conclusions: As the highest relative number of basophils was identified by anti-CCR3 followed by the anti-IgE and anti-IgE/antiCD203c positive population in most cases, these markers can generally be recommended for identification of basophils. If a basophil population with very high purity is needed, anti-IgE should be chosen. © 2014 International Clinical Cytometry Society

Key terms: basophil identification markers; basophil activation test; multicolour flowcytometry

How to cite this article: Eberlein B, Hann R, Eyerich S, Pennino D, Ring J, Schmidt-Weber CB, and Buters J. Optimizing of the Basophil Activation Test: Comparison of Different Basophil Identification Markers. Cytometry Part B 2014; 00B: 000–000.

Correspondence to: Prof. Dr. Bernadette Eberlein, Klinik und Poliklinik für Dermatologie und Allergologie am Biederstein, Technische Universität München, Biedersteiner Str. 29, D-80802 München, Germany. E-mail: eberlein@lrz.tum.de

Received 26 March 2014; Revised 25 October 2014; Accepted 4 November 2014

Cytometry Part B (Clinical Cytometry) 00B:00–00 (2014)

© 2014 International Clinical Cytometry Society
measurement in order to find the optimal marker combination for the BAT using CD63 as activation marker. Furthermore “contamination” of nonbasophils within the basophil gates was investigated.

MATERIAL AND METHODS

Blood Donors

Ten patients (4 men, 6 women) at the age of 24–51 years (mean age: 31.4 years) with a grass pollen allergy (positive history of rhinoconjunctivitis, positive prick test to grass pollen, positive results for sIgE to grass pollen ranging from 0.91 kU/L [ImmunoCAP class 2] to >100 kUA/L [ImmunoCAP class 6], and total IgE ranging from 71.2 kU/L to 1146 kU/L [mean: 263 kU/L]) and 3 controls (1 man, 2 women; negative history of rhinoconjunctivitis, negative prick test to grass pollen and negative sIgE to a panel of standard allergens including grass pollen) were included in the study. Tests were performed before the grass pollen season in Munich (November 2012 to February 2013). The study was approved by the local ethics committee.

Basophil Activation Test

Venous blood was collected in 10 mL EDTA tubes. The anticoagulated blood samples were gently homogenized by inverting several times. BAT was performed by using reagents of FlowCAST (Bühlmann, Schönenbuch, Switzerland) except for the staining reagents, the lysing/fixing buffer 5× (BD Biosciences, San Jose, CA) and the 0.1% NaN₃ (in phosphate buffered saline). For each patient four polystyrene tubes were prepared: One with 50 μL Phleum pratense extract (G6; Bühlmann, Schönenbuch, Switzerland) diluted in stimulation buffer to an end concentration of 4.8 ng/mL. The other tubes contained positive controls either a monoclonal anti-FcεRI antibody (IgE mediated positive control 1) or N-formyl-methionyl-leucyl-phenylalanine (2 mM) (non-IgE mediated positive control 2). In order to evaluate basal values without stimulation, 50 μL of pre-warmed stimulation buffer was applied to a separate tube. To each tube 100 μL of pre-warmed stimulation buffer (containing calcium, heparin, and 5 ng/mL IL-3), 50 μL of patients’ blood, and simultaneously 10 μL V450 Rat Anti-Human CD294 (CRTH2) (BM16), PE-Cy7 Mouse Anti-Human CD63 (H5C6; diluted 1:40), Alexa Fluor® 647 Mouse Anti-Human CD193 (CCR3) (5E8), PerCP-Cy™ 5.5 Mouse Anti-Human CD3 (SP34-2) (all from BD Biosciences GmbH, San Jose, CA), monoclonal Anti-IgE-FITC (4H10) (Sigma-Aldrich, Saint Louis, MO), and Anti-CD203c-PE (97A6) (Beckmann Coulter Company, Marseille, France) were added.

After gently mixing, the tubes were covered with an adhesive plastic sheet and incubated at 37°C in a water
bath for 20 min. The stimulation was stopped by adding 1 mL of prewarmed lysing/fix buffer (Lyse/Fix Buffer 5×; BD Biosciences GmbH, San Jose, CA), and the tubes were incubated again at 37 °C for 20 min. After centrifugation for 10 min at 4 °C at 2,400 rpm, the supernatant was decanted and 2 mL of PBS was added to each tube. After centrifugation at 2,400 rpm for 10 min the cells were resuspended with 600 µL 0.1% sodium acid solution. Flow cytometric analysis of the cells was performed on a FACS BD LSRFortessa™ cytometer (BD Biosciences GmbH, Heidelberg, Germany) equipped with four lasers (Violet Laser (405 nm), Blue Laser (488 nm), Red Laser (630 nm), and Ye-Gr Laser (561 nm)) within 2 h.

For the compensation of the fluorochroms BD™CompBeads Anti-Rat Ig, κ (G16–510E3) as well as Anti-Mouse Ig, κ/Negative Control (FBS) Compensation Particles Set (BD Biosciences, San Jose, CA) were used. When performing the bead compensation according to the manufacturer’s protocol, autofluorescence was adjusted to basophils. As basophils cannot be identified in forward scatter (FSC)/side scatter (SSC) plots due to co-occurrence with T and B cells, we first stained with CCR3 AF647 and adjusted the autofluorescence of the gated cells in all other channels (FITC, PE, PeCy7, PerCP5.5). Afterwards basophils were identified with IgE FITC staining and the autofluorescence for the AF647 channel was determined. These autofluorescence settings were used to perform the bead compensation and to define the cut-off for positive fluorescence.

Statistical Analysis

Statistical analysis was performed using the program IBM SPSS 20 as well as Microsoft Office Excel 2007. Differences between the cellular markers were calculated by the paired t-test. Values of $P < 0.05$ were considered significant. Furthermore, the Kendall’s coefficient of concordance was used. Kendall W ranges from 0 (no concordance) to 1 (complete concordance). Data in Figures 3 and 4 are presented as boxplots showing the median in the middle of the box (line), the area between the 1st (Q1) and 3rd (Q3) quartile (box), Q1–1.5 IQR

Fig. 2. Activation of basophils. Activation of basophils was determined according to induction of CD63 expression after stimulation. CCR3+ and CD203+ basophils were identified in the lymphocyte population and either left unstimulated (a) or were stimulated with antibodies against the FcεRI (positive control 1) (b), N-formyl-methionyl-leucyl-phenylanlanine (positive control 2) (c), or *P. pratense* (allergen) (d). Shown is one representative experiment of an allergic donor out of ten. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
RESULTS

Gating Strategies and Identification of Basophils

Basophils were identified in two discrete cell populations of whole blood—an overall leukocyte and a lymphocyte population. Both populations were separated on a FSC/SSC histogram (Fig. 1a). Basophilic cells were identified by using anti-CCR3-Alexa Fluor 647, anti-IgE-FITC, anti-CRTH2-V450, and anti-CD203c-PE antibodies for flow cytometry. In the leukocyte population, basophils can be identified by single staining (Fig. 1b), however, contamination of the basophils with other leukocytes cannot be excluded. Therefore, basophils were further identified in the lymphocyte population with combinatorial stainings of CCR3 with CD203c, IgE, and CRTH2 and CD203c with IgE (Fig. 1c). To understand the potential cross contamination of the identified basophils with T cells, basophil markers were plotted against CD3 (Fig. 1d) revealing a contamination risk only for basophil identification with CRTH2.

To evaluate the impact of different marker combinations on the BAT, basophils were activated in erythrocyte-lysed whole blood. Figure 2 gives an example of one of the used gating strategies using CCR3+/CD203c+ double positive basophils that have been identified in the lymphocyte population. Basophils were activated with antibodies against Fce receptor (Positive 1), N-formyl-methionyl-leucyl-phenylalanine (FMLP) (Positive 2), and P. pratense (Allergen) or were left unstimulated as control (Negative). Up-regulation of CD63 was used to calculate the percentage of activated basophils (Fig. 2).

Comparison of Relative Basophil Numbers

Cells labeled with the following single markers or marker combinations were used: CCR3+, IgE+, CD203c+, CCR3+/IgE+, CCR3+/CD203c+, CCR3+/CD3+, CRTH2+/CD3+, CRTH2+/CD203c+/CD3+, and (interquartile range) and Q3+1.5 IQR (whiskers) and outliers (○).
IgE+CD203c+ cells. The relative basophil number was expressed as percentage of total cell counts. Values of patients and controls were taken together. The highest medians of cell numbers (except for stimulation with monoclonal anti-FcεRI antibody) were found with CCR3+ (negative control: 46.8% × 10^-3 of total cells, stimulation with fMLP: 56.5% × 10^-3 of total cells, stimulation with allergen: 52.0% × 10^-3 of total cells) the lowest with CRTH2+/CD203c+/CD3− cells (negative control: 16.1% × 10^-3 of total cells, stimulation with monoclonal anti-FcεRI antibody: 9.4% × 10^-3 of total cells, stimulation with fMLP: 26.8% × 10^-3 of total cells, stimulation with allergen: 13.9% × 10^-3 of total cells). Details are shown in Figure 3. Statistical comparison of CCR3+ cells with cells that were labeled with all other markers and marker combinations revealed no significant difference to IgE+ cells, CCR3+/IgE+ cells (except for stimulation with monoclonal anti-FcεRI antibody and allergen), IgE+/CD203c+ (except for stimulation with monoclonal anti-FcεRI antibody), and significant differences to CD203c− cells, CRTH2+/CD3− cells (except negative control), CCR3+/CD3− cells, CCR3+/CD203c− cells, and CRTH2+/CD203c−/CD3− cells. In the concordance analysis after Kendall very good and good concordance of CCR3+ cells were seen with CCR3+/CD3− cells and CRTH2+/CD203c−/CD3− cells in all experiments. For details see Table 1.

It is known that IL-3 which was used in our stimulation buffer activates CD203c in basophils (10), but with regard to the results this seems not to be relevant for identification of basophils.

Contamination with “Non-Basophils”

Non-basophils were defined as CD3−, CCR3−, and CD203− cells. The contamination of the CCR3+ population with CD3− cells (negative control: 7.6%, stimulation...
Table 1

Comparison of the Number of CCR3-positive Cells (% of Total Cells; Median, Range) With the Number of Cells Labeled With the Other Markers and Marker Combinations

<table>
<thead>
<tr>
<th>Cells</th>
<th>CCR3+</th>
<th>IgE+/CD3+</th>
<th>CRTH2+/CD203+</th>
<th>CD203c+/CD3+</th>
<th>CRTH2+/CD3+/CD203+</th>
<th>CRTH2+/CD203c+</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cells</td>
<td>46.8 (3.0–106.1)</td>
<td>4.1 (3.0–103.1)</td>
<td>5.1 (0.2–100.1)</td>
<td>0.92 (0.1–96.2)</td>
<td>0.20 (0.1–80.0)</td>
<td>0.11 (0.1–50.0)</td>
</tr>
<tr>
<td>Negative control</td>
<td>41.5 (4.0–103.2)</td>
<td>4.3 (3.9–97.1)</td>
<td>0.053</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>Positive control 1</td>
<td>54.5 (10.7–92.6)</td>
<td>7.6 (6.8–97.4)</td>
<td>0.716</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>Positive control 2</td>
<td>52.5 (8.9–104.1)</td>
<td>6.8 (6.0–107.4)</td>
<td>0.479</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
</tr>
</tbody>
</table>

P-values for the paired t-test and the concordance analysis of Kendall. Good and very good concordance (Kendall value > 0.6) is highlighted. Results of the paired t-test and the concordance analysis of Kendall.

DISCUSSION

Since the introduction of the BAT different basophil identification markers were used, but comparisons between the different markers were analyzed to a limited extent. Sensitivity of a BAT using anti-IgE was higher than in the BAT using anti-CD123/anti-HLA-DR (85% vs. 72%) in patients sensitized to grass pollen (11). It could be shown that fMLP-induced up-regulation of CD63 was higher (31.2% ± 4.9) in the CCR3 protocol than in the anti-IgE protocol (14.5% ± 3.4) (8). Comparison of the identification marker anti-IgE-FITC and anti-CCR3-PE in patients with betalactam allergy showed comparable results with a slightly higher sensitivity (not significant) with anti-CCR3-PE (12). Comparison of the two different staining strategies anti-CD123-PE/anti-HLA-DR/PerCP/anti-lin1-FTC and anti-IgE-FITC/antiCD3-PerCP/anti-CCR3-PE revealed that CCR3 is a stable and highly expressed basophil selection marker independent of the atopic background or basophil activation state. In contrast, the basophil markers anti-CD123/anti-HLA-DR and anti-IgE showed higher inter-individual variability (7). For this reason, we decided to not include anti-CD123 and anti-HLA-DR in this study.

Activated Th2-lymphocytes can also express CCR3 and it was suggested to include anti-CD3 to exclude CCR3-positive T-cells (8). Measurements showed that the number of CCR3-positive T-cells were negligible (13,14). This was also observed in our study (Fig. 4). Our results also showed that the Kendall’s coefficient of concordance comparing CCR3+/CD3+ cells and CCR3+/CD3+ cells was good or very good (Table 1). Similar good coefficients were also obtained with marker combinations using CD203c-PE as marker (CRTH2+/CD203c+ and CCR3+/CD203c+ cells), but not with marker combinations using anti-IgE-FITC as marker (CCR3+/IgE+ and IgE+/CD203c+). This may be due to the known inter-individual variability.

Non-basophils defined as CD203c- cells were significantly higher in CCR3+ and CRTH2+/CD203c+ cells than in IgE+ cells (Table 2) suggesting that this marker revealed the purest basophil cell population in our comparisons. If a basophil population with very high purity...
is needed, anti-IgE should be chosen. For other purposes, a combination of SSC/anti-IgE/anti-CD203c or anti-CCR3 is recommended.

ACKNOWLEDGMENT

Authors would like to thank Frans Nauwelaers (BD Biosciences) for providing antibodies and Bernhard Haller (Institut für Medizinische Statistik und Epidemiologie, TU München) for statistical support.

LITERATURE CITED